

Fundamentally, HEP requires QC^[1]

[1]

Bauer, C. W. et al. In: (Apr. 2022). arXiv: 2204.03381 [quant-ph].

What "champagne problems" need to be solved?

- Encoding: How are bosons represented as registers?
- Initalize: How can registers be set to a state?
- Propagate: How can gates evolve states?
- Evaluate: How can observables be computed?

• Mitigate: Can LFT-specific QEC/QEM be cheaply designed?

What might a galactic algorithm look like?

Quantum Algorithms for Quantum Field Theories

Stephen P. Jordan, 1+ Keith S. M. Lee, 2 John Preskill 3

Quantum field theory recordies quantum mechanics and special relativity, and plays a central role in many areas of playsis. We developed a quantum algorithm computer relativistic scattering probabilities in a mastive quantum field theory with quartic self-inferractions (§* theory) in specific relativistic productions in the manufact of particies, assertine of four and feer dimensions. It is un time to polynomial in the manufact of particies, the production of the production o

4/9

Vacuum Prep+Adiabatic evolution+Trotterization+Measurements^[2]

Example: $|\langle p\bar{p}|U(t)|\pi\pi\pi\pi\rangle|^2$ needs $\mathcal{O}(10^8)$ logical qubits

 $\approx \left(\frac{4 \text{ fm}}{0.05 \text{ fm}}\right)^3 \times (3 \text{ links} \times 11 \text{ qubits} + 3 \text{ colors} \times 2 \text{ flavors} \times 2 \text{ spins} \times 1 \text{ qubit})$

[2]

Jordan, S. P., K. S. M. Lee, and J. Preskill. In: Science 336 (2012). arXiv: 1111.3633 [quant-ph].

Today's estimate: $\mathcal{O}(10^8)$ q & $\mathcal{O}(10^{55})$ T-gates^[3]

"...99.998% of the gate counts stem from QFOPs...The SU(3) *HI collision* problem is...> 3 yrs of runtime on an exa-scale quantum supercomputer."

- pp scattering on $(L/a)^d = 100^3$ lattice
 - Observables dictate L/a, T/a_t , $d \implies$ fewer qubits
- Kogut-Susskind Hamiltonian
 - Improved Hamiltonians will increase $a \implies$ fewer qubits
- Truncate to $\Lambda = 10$ in the electric field values (24q)
 - Better truncations allow fewer qubits per link near continuum

[3]

Kan, A. and Y. Nam. In: arXiv preprint arXiv:2107.12769 (2021).

5/9

Today's estimate: $\mathcal{O}(10^8)$ q & $\mathcal{O}(10^{55})$ T-gates^[4]

"...99.998% of the gate counts stem from QFOPs...The SU(3) *HI collision* problem is...> 3 yrs of runtime on an exa-scale quantum supercomputer."

- Trotterization U(T) with loose error bound $\epsilon_{Trotter}$
 - Other methods: variational, QDRIFT, qubitization ...
- Decomposing specific unitaries into gates introduces $\epsilon_{synthesis}$
 - Different platforms: Analog, Digital, CV, Qudits
- $\epsilon \equiv \epsilon_{Trotter} + \epsilon_{synthesis} = 10^{-8}$
 - Current theoretical errors can be $\mathcal{O}(1)$

Cracking RSA and Quantum Chemistry need $\mathcal{O}(10^7)$ q & $\mathcal{O}(10^{20})!$

[4]

Kan, A. and Y. Nam. In: arXiv preprint arXiv:2107.12769 (2021).

Perhaps THE question of the next 10 years

Can NISQ^[5] era give practical quantum advantage?^[6]

YES: What are they, so $we^{[7]}$ can focusing on them more!

- Identify target calculations
- Resource estimates & Dedicated HEP devices?
- Error mitigation
- NISQ algorithms

NO: We^[6] shouldn't devote as much time to some topics.

- Emphasize theoretical developments over running today
- HEP-specialized Hardware
- Error Correction
- Quantum Stack & FT algorithms
- [5] Nebulously defined as $O(10^{2-4})$ qubits/layers without error correction
- Nebulously defined as some new physics insight that couldn't reasonably be gotten classically
- [/] HEP physicists

Developing quantum-ready physicists

- WE get to define US
- Requires diverse and inclusive workforce with skills beyond traditional HEP.
- Opportunities exist as early as high school.
- Portfolio of funding mechanisms, career paths and mentoring needed.
- QCIPU just finished year 2. Perhaps QuTASI?
 Hackathons?

8/9

It's one calculation, what could it cost?

A lot has been solved...and lots more to do

- Digitizing Field Theory
- Formulating state preparation
- Performing Time Evolution
- Measurements and Observables
- HEP-specialized QEC/QEM

The next 10 years will seem many leaps in our understanding of quantum sims of HEP, and will someday open new avenues

